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A plane problem of magneto-elasticity is considered for a soft ferromagnetic medium weakened by 
several cracks, which are treated as mathematical cuts in the initial (non-deformed) state. Since the 

approach used to analyse the effect of magnetization of the medium on the stress state in the 

neighbourhood of a rectilinear crack [l-3] is inapplicable in the general case, a new procedure is 

developed. It is based on representing the mechanical and magnetic quantities in terms of arbitrary 

analytic functions. The boundary-value problem is reduced to a system of two singular real integral 

equations of the first kind. Formulae for the stress intensity factors at the crack tip are obtained. An 

example is presented. 

1. FORMULATION OF THE PROBLEM 

CONSIDER an unbounded soft ferromagnetic medium in a rectangular Cartesian system of 
coordinates 0x,x,x,, the medium being weakened by tunnel-shaped cuts Lj (j = 1, 2, . . . , k) 
along the x, axis. We shall assume that the original magnetic field (in which the ferromagnetic 
body has been placed) is uniform over the whole space and directed parallel to the x, axis (Fig. 
1). Because the material becomes magnetized, the body acquires a magnetic moment and 
subject to mechanical impact by the external field. We assume that mechanical loads (XI,, 
X,, O), where X, = X,(x,, x2), can act on the surface of the cracks. Under the influence of all 
these forces, the medium undergoes deformations, giving rise to an additional (induced) 
magnetic field. The problem consists of determining the mechanical and magnetic fields 
interacting with each other in the ferromagnetic medium with cracks. 

In studies of this kind one usually uses a version of the theory based on the linearization of 
the equations of magneto-elasticity for soft ferromagnetic media (in the unsaturated state), 
neglecting magnetostriction and the effect of induction currents [l, 4,5]. 

Suppose that the deformation of the body caused by the field of an infinitesimally small 
displacement vector (u.,, y, UJ gives rise to small variations 

B=Bo+b, M=Mo+m, H=Ho+h (1.1) 

of the original magnetic field. Here B,, = (B,), H,, = (Hoi), and M,, = @I,) (i = 1, 2, 3) are the 
magnetic induction, the magnetic field strength, and the magnetization corresponding to the 
non-deformed state of the body b, h, and M being the fluctuations of the above-mentioned 
quantities, which, by assumption, have the same order of magnitude as the elastic displacement 
vector. 
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Then, provided that IA40j~j~i 14 I m, I, we have the following system of linear relationships: 
the field equations (summation over repeated indices) 

ajtji +po(MojajH,i + Mo,djhi + mjajHoi)= 0 

roth=O, divb=O, ai=a/axi (i.j=1,2,3) 

(1.2) 

the material equations 

m=Xh, b=p,(h+m)=p&h, u,=l+x 

f;i =oo +~clo(H,iH,j + H,ihj + H,jhi) 

Tj = Hoj&i + Hojbi +B&j -$po(HokH,,)&j -po(H&)Sy 

bij = xtiijakup + i(ajUi + aiUj) 

and the boundary conditions at the interfaces between the media 

(S~-SG)tlj=0, Sjj=ti+Tj (i,j=1,2,3) 

E+Inj(hk -hi)-(Ho, - H&)n,,,iljum)=O 

n;(bi -br)-(B,i - B&)n,aiu,,, = 0 

(1.3) 

(1.4) 

Here tii and Tg are the magneto-elastic and Maxwell stress tensors, eijk is the permutation 
tensor, superscript e indicates that the corresponding physical quantity characterizes the 
external medium (in the case under consideration, the crack cavity), ni is the projection of the 
unit vector normal to the interface onto the xi axis, p., = 47~ x lo-’ H/m is the absolute magnetic 
permeability, p, is the relative magnetic permeability, x is the magnetic susceptibility of the 
medium, and h and u are the Lame constants. 

Relations (1.2)-(1.4) involve the components of the unperturbed magnetic field, which can 
be determined from the solution of the problem of magnetostatics for adjoining media (one of 
which is usually associated with vacuum) 

rotHO=O, div&,=O, Bo=po(Ho+Mo)=pop,Ho 

rot H,’ ‘= 0, div B,C = 0, B,C = p,-,H,L 

E+ nj(HOk-H&)=0, ni(Boi-B,‘;)=O 

(13 
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The system of equations (l.l)-(1.5) is complete in the sense that it enables one to determine 
all mechanical and magnetic quantities within the body, as well as the magnetic field in the 
surrounding medium. 

Proceeding to the solution of the two-dimensional limiting problem for a ferromagnetic 
medium, we assume that the magnetic field Z3, is not affected by the presence of cracks, the 
latter being treated as mathematical cuts in the non-deformed state. Hence, we set B, = (0, B,, 
0), where B, = const. Equations (1.5) will obviously be satisfied for the following values of the 
magnetic field on the axis of a cut 

H,C, = XHo2n,nz, H&(1 + Xnf), n1 = cos\y, n2 = sinv (1.6) 

where w is the angle between the normal to the left edge Lj (when going from the starting 
point uj to the end point bj) and the X, axis (Fig. 1). 

In view of the fact that tij, Tj, 4 are independent of x,, relations (1.2), (1.3) yield [l] 

V2Ui + Oai6 + 2~-‘~0H~2~2hi = 0 (i = 1,2) 

V2Y=Oo, h=gmdY, ti=a,u,,, (1.7) 

o=(I-~v~, v2=a;+a; 
The boundary conditions follow from (1.4). Taking (1.6) into account, we have 

n&-I$)--fi,(h;-h;)=M,,n,(U;)* 

u; =n,&, 1 as, alas=n,a2 -n2a, 

where hif, b,?, (U:)* are the values of the corresponding quantities on Lj, and /z; and b; are 
their values inside the “crack cavity” (on its axis). 

From the four equations (1.8) we find the components of magnetic field fluctuations within 
the crack cavity 

h; = (xn: + l)h: + III~& - &(U;)* cOs2V 

$ = n,n2m: + (xni + l>$ - MO2 (U; )* sin 2V 

(1.9) 

Obviously, formulae (1.9) are meaningful under the following compatibility conditions for 
system (1.8) 

<x$ f I)lh, I+ qn2x[h, I= W-J-J, cos2y 

nln2X[hIl+(pt~+l)[lt,l=MozUlsin2y, U, =[U;I 

(1.10) 

where the square brackets denote the jump of the corresponding quantity as the cut is crossed. 
We obtain the mechanical boundary conditions on the edges Lj using (1.3), (1.6) and (1.7). 

We express them as complex equalities 

(1,1 + Cam)* - e2dw(f22 -t,l +2it,,)* +2poMo2(Hma(yf)U~ -n2n&hm)* = 

= 2(N - iT)* + p. M&n;, a(v) = Xn2e+ -i 

(1.11) 

Here N and Tare the normal and shear forces acting at the edges Lj, the upper sign referring 
to the left edge (Fig. 1). 
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Below we shall assume that [N-iT]= 0. It suffices to ensure that boundary equality (1.11) is 
satisfied at one of the edges of each crack only, provided we take into account the condition of 
continuous extendibility of its left-hand side as Lj is crossed 

Itll + fz2 I- e2N [tu - tl 1 + 2ir12 I+ 2poW&P(v)Ul = 0 

P(w) = xv2K’ - it1 + x4) 

(1.12) 

It follows that the boundary-value problem consists of finding a solution of the differential 
equations (1.7) that satisfies conditions (1.10) and (1.12) for the jumps and one of the boundary 
conditions (1.11) on Lj. 

2. THE GENERAL SOLUTION OF SYSTEM (1.7) 

One can see immediately that the volume expansion 6 is a harmonic function. In view of 
this, we set 

pfi = (K - l)RecD(r), Y = Re(if(z)), K = 3 - 4v (2.1) 

where Q(z) and f(z) are arbitrary functions of the complex variable z = X, + ix, analytic in the 
domain occupied by the body, and v is Poisson’s ratio. 

Writing the equilibrium equations (1.7) as an equivalent complex equation with respect to 
u, +iu, and integrating it in accordance with the definition (2.1) of volume expansion, we find 
that 

2p(u, +i%) = q(z)- z~-~+ l.@4~2(zFo-f(z)) (2.2) 

O(z) = z = q’(z), F(z) = f’(z) 

where v,(z) is an arbitrary analytic function and 7 is the complex conjugate function to 5 
From (2.1) and (2.2), taking (1.3) and (1.4) into account, we deduce that 

rii + tz2 = 4Re@(z)-2&M, ReF(z)+ xc~&& 

t2* - t,, + 2it12 =2(w’(z)+w~(z))+~p&~ 

S,, +S,, =4ReW(z)+2~0H~2, hi -ih =3(z) (2.3) 

@i(Z).’ (p;(z), W(z) = 4(z) - l.l&QF(z), W,(z) = @1(z) - l&)&F(z) 

S, - S,, + 2iS,, = 2{TW’(z) + W,(z)) - 2&-&z) + (1+ 2X)cL@& 

It follows that the components of the magneto-elastic and Maxwell stress tensors as well as 
the mechanical displacement and magnetic field vectors in the ferromagnetic body can be 
expressed in terms of three arbitrary analytic functions. For B, = 0, formulae (2.2) and (2.3) 
are the same as the classical representations of the plane problem of the theory of elasticity. 
Some forms of representing the solutions of magneto-elasticity problems in terms of functions 
of a complex variable can be found in [6,7]. 

We complete the formulation of the boundary-value problem by recasting conditions (1.9) 
(l.ll), and (1.12) in terms of analytic functions. We have 
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3. INTEGRAL REPRESENTATIONS OF THE SOLUTIONS 

Following [8], the representations of the desired analytic functions, which are correct in the 
sense that the conditions for the jumps in (2.4) are satisfied independently of the densities 
occurring in them, will be written in the form 

W) = W(z) + Po4r2Wh a1 (z) = w,(z) + P&o*~(Z) 

Pj(CJ=~ (i~l(~)-U2t~)+e,2hjtW)U,(~)) ti= 12) 
(3.1) 

The densities Uj can be expressed in terms of the displacements by the formula (ds being the 
element of arc of L) 

(I!/, + iU2 )eiv = d / ds[u, + iu, I (3.2) 

which is consistent with the definition of U, in (1.8) and (1.10). 
The functions (3.1) do not yet fully correspond to the physical content of the boundary-value 

problem in question. One has to ensure that the single-valuedness conditions for the displace- 
ments are satisfied in the domain occupied by the medium, and also that the equalities 

J, h4 +n2b2)ds=0, ] (n,b -n2hl)ds= 0 (j+lJ,...,k) 
I ci 

(3.3) 

are satisfied, Ci being an arbitrary closed contour encompassing Lj. By (3.1), the single- 
valuedness conditions for the displacements can be reduced to 

,I. (U, +iU,)d<= 0 (j= 1,2 ,..., k) (3.4) 
! 

Taking (2.3) into account, we can represent (3.3) in the equivalent form 

po~~)d~=O tj=1,2 ,..., k) (3.5) 
I 
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Hence the integral representations (3.1) make sense only if conditions (3.4) and (3.5) are 
satisfied. In fact, equalities (3.5) follow from (3.4). This can easily be seen by invoking the first 
formula in (2.4) and the definition (3.2). 

4. INTEGRAL EQUATIONS OF THE BOUNDARY-VALUE PROBLEM (2.4) 

Substitution of the boundary values of the functions (3.1) into boundary condition (2.4) at 
one of the edges of L leads to the following system of singular integral equations of the first 
kind 

4m2, = WW&H,h- H,g)+~(l+~sin’ ~o)e&c+l)~]d~) 

4d& =Re([2H,O(g-h)-~(l+Xsin’\y,)e,2(~+l)]dz) 

4N,(c)= 7C(K+l) F+xei(& -l+cos2y) 1 
2&(c) = X(K + +e;nlq -3, 8 = e2i(vo-v) 

(4.1) 

hze2iY10 ;-;b, 
-0 

Hj=Hj(W), Hj=Hj(~o) 

H1=i+e,2A,(w), Hz=eim-i, Hs=2Hd+s 

1 
H4=- .2 233 

K+l 
+1x e0 

4 

H, =a(yl)+X2e,2(1-K+e 2&t 4n2 )2 

H(w,w~)= H, +~X2e&~)(l-~+eZivo) 

This system must be considered together with additional conditions (3.4). Moreover, provided 
that the contours Lj have no common points and their curvatures and the functions Ni(c) 
satisfy the Holder condition, we obtain a unique solution in the class of functions unbounded 
at the end-points of Lj. 

5. THE STRESS INTENSITY FACTORS 

We will introduce the following parametric representation of Lj (subscript j will be omitted 
below): c= c(B), where -1 c l3 G 1. Correspondingly, we set 
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wc)=%(p)l~ (5.1) 

where Q,,,(p) satisfies the Holder condition in [-1, 11. 
On introducing the function (5.1) into the integral representations (3.1), as a result of the 

standard procedure for separating the singularities of the solution at the end-points of Lj, we 
find that 

n; = cosIq(+l), nzf = sin w(+l) 

Kf-iKi=&(,!?,,,,-is,,,), r=lz-cl-0 

41 = 
2x@ - 2) 

x+1 ’ 
U22 = -2X(K + 1) q2 =a2, =ix(k+l+z) 

where the upper sign refers to the tip c = b (g = l), while the lower sign refers to c = a (g = -I), 
S, and S,,, being the normal and tangential total stresses over an area with normal vector 
n = (cosy,, sinv,) in a region extending beyond the tip c. 

6. EXAMPLE 

Consider a medium with a rectilinear crack of length 21 oriented relative to the original magnetic field 

as in Fig. 2(a). We take the parametric equation to be 6 = i#eh, <,, = i@,,eY, where -1 d g, p,, d 1. This 

being the case, the integral equation (4.1) and the additional condition (3.4) take the form 

4pz =4+xei(l-K)(l+&), do =-1, 4ff, =(tc-l)ei 

4d2 =-+)e;, 4d3 = (tc+l)e#. nl%d; =-(1+x&d*. 

4d., =&;++I+~) 

4d; = e&z2 K+l+ ( 3 
The solution of the characteristic system (6.1) is 

Q,@)=A$ (n=W (6.2) 

I&I, = puN; - p,zN;. u2 = P,,% -pz,N: 

A = PI 1~~2 - ~12~21 

Correspondingly, one can determine the desired analytic functions and their combinations (Fig. 2b) to be 
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(B:)’ x 10’ 

10 

7 

4 

I 
u 

FIN .2. 

h,, grad 

F(z) = ~M,,A,WMz), W(z)=i~E~y~(z) (6.3) 

zW’(z)+W,(z)=p 
i & 

sin(Op --0,)exp 
[ 

r& -$@I +O,) 1 - 

(K+~)E, =A,~J -AZ, (K+WZ =A,&Az 

ie, Z-c=ple , 
it32 z+c=p2e , y&J 

Using (6.3), we can find the mechanical and magnetic quantities at any point of the body. In particular, on 
a straight line parallel to the crack we have 

(6.4) 

A, + iA, -- 
lC+l 
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But if the straight line coincides with the crack axis, we find from (6.4) that 

for p d 1. If p > 1, the additional term -2iE,ppld(p’ -I’) will occur on the right-hand side of (6.5). 
Using these relationships, one can observe the effect of the orientation of the crack with respect to the 

original magnetic field E,, on the mechanical and magnetic quantities. The simplest results can be 

obtained for a horizontal or vertical crack. In this case, PQ~, = 0, pn = pZ1 = 0, and the system of equations 

(6.1) splits into two independent equations, the quantities A, that occur in (6.2) being such that 

nyllA1 = N;, l~pd2 = N; 05.6) 

where 

4plI =X&(K+~)X~+(K-I))-~, N; =- F&+1) 

4p22 =4-X&,(K-l), N; =;(~+l) 
I 

for a horizontal crack (n, = 0, n2 = -l), and 

4y,, =&( ~-l-#-4, N; =-++l) 

+22 =&~&C-1). N; =$(x+1) 

for a vertical crack (n, = 1, nZ = 0) 
It follows immediately from (6.4)-(6.6) that there are values of bt = (p,e,)* = Bi /(pp,,), which are called 

critical, for which the components of the magneto-elastic and Maxwell stress tensors as well as the 

magnetic field and induction vectors in a ferromagnetic medium with a crack become infinite. This effect 
was discovered in the case of a horizontal crack in [l-3]. At the same time, this is not so for a vertical 

crack (parallel to the original magnetic field). As follows from (6.6), there is no such critical value for 
N# 0 and T = 0, while for N = 0 and T#O it exists theoretically (6: = 6.3~102 when p, =lO’ and 

v = 0.25), but it cannot, in fact, be realized. Taking into account that the total stresses in a uniform ferro - 
magnetic medium in the presence of the original magnetic field (0, B,, 0) are 2S,, = -p,&, and S, = 0, 

2s, =(~x+I)P&, one can conclude that the plane equilibrium form is impossible in a ferromagnetic 
medium with a crack if b, = b:. 

For a rectilinear crack oriented at an angle ~/2-h, to the initial magnetic field, the critical value b,* 
can be defined in accordance with (6.2) as the least positive root of the equation A = 0. This is an algebraic 
equation of the fourth degree in b,. The least value b: is attained for h, = 0 (b: = 3.6 x lo5 when 
p, = lo5 and v = 0.25). Furthermore, as h, increases from 0 to ld2, b, increases monotonically up to the 
value for a vertical crack specified above (Fig. 2). 

It follows from the above that in the general situation (in the setting of [4]) a spectrum of critical values 
of b, exists depending on the configuration of the cracks, their position with respect to one another, their 

orientation relative to the initial magnetic field, and the type of loads for which the plane equilibrium 
form is impossible. 
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